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Overview 
 
This report describes the data and methods used to generate the interactive Minneapolis-St. Paul 
Transportation Happiness Map at http://maps.umn.edu/transportation-happiness. The map 
illustrates spatiotemporal differences in travelers’ happiness ratings on the streets and roads in 
the Minneapolis-St. Paul metropolitan region. For policy makers who are interested in improving 
people’s transportation happiness, the map provides important insights on road and street 
segments that are in need of closer investigations for future improvements.  
 
Figure 1 is the main user interface of the interactive transportation happiness map. Users can 
select among 10 travel mode(s) options (including the all modes option), 7 time(s) options 
(including the all times option), 8 emotion options, and two statistic options (mean and median). 
 

 
Figure 1. Screenshot showing main user interface of the transportation happiness map 

http://maps.umn.edu/transportation-happiness


3 
 

 
Data 
 
The data used for mapping transportation happiness come from the Minneapolis-St. Paul Metro 
Area Subjective Well-Being Data: 2016 – 2017 (Fan et al., 2020). The data was collected using 
an Android-based smartphone application-Daynamica, previously SmarTrAC (Fan et al., 2015). 
Daynamica is capable of detecting activities and trips in real time to construct sequenced 
activity/trip episodes throughout the day (Figure 2a). It also allows the user to annotate the 
detected activities/trips with additional information such as companionship and emotional 
experiences during each activity/trip at their convenience (Figure 2b). 
 

 

 

(a) Daynamica constructs sequenced activity and 
travel episodes in real time throughout the day. 

(b) Daynamica enables user input on each activity 
or trip episode at their convenience. 

Figure 2. Daynamica main interface (Fan, Brown, Das, & Wolfson, 2019) 
 
Using the Daynamica app, the survey successfully recruited 398 residents from six 
neighborhoods in the Minneapolis-St. Paul region, including four urban and two suburban areas 
(Figure 3). The recruitment was based upon geographic cluster sampling: random blocks were 
selected within each neighborhood, and efforts were made to recruit as many households as 
possible from each block. As shown in Table 1, the distribution of participants across 
neighborhoods is relatively even, ranging from 55 to 79 participants per neighborhood. Two 
third of the participants were female, indicating overrepresentation of female participants in the 
sample.  
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Table 1. Participants by Gender and Neighborhood in the Minneapolis-St. Paul Region 

 
Neighborhoods Location  Income 

Level 
Rail 

Access 
Male Female Total 

Phillips Urban Low Yes 27 48 75 
Near North Urban Low No 16 46 62 
Prospect Park Urban High Yes 25 43 70 
St. Anthony Park Urban High No 24 55 79 
Brooklyn Center Suburban Low No 18 39 57 
Blaine Suburban High No 18 37 55 

Total 128 268 398 

 

 
Figure 3. Locations of Study Neighborhoods 

 
Each participant carried a smartphone equipped with the Daynamica app for seven consecutive 
days. In addition, home-based entry/exit surveys were conducted for each participant to collect 
individual socio-demographic data as well additional individual-level data including personality 
attributes, life evaluation, and satisfaction with various aspects of life including work, health, 
leisure, home, and the neighborhood. Figure 4 below illustrates a participant’s detailed activity 
and trip data along with self-reported happiness ratings over seven consecutive days that were 
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collected by the Daynamica app.  
 

 
Figure 4. Illustration of 7-day activity-trip data with happiness information 

 
To summarize, the following data were generated in 2016-2017 Minneapolis-St. Paul Well-
Being survey efforts: 

• Episode-level activity-travel data over seven consecutive days for each participant, 
including spatiotemporal details, type, companionship, and happiness ratings for each 
activity/trip episode. There are a total of 11,182 activity episodes and 10,968 trip 
episodes in the dataset.  

• Individual-level data on socio-demographics, personality, life evaluation, and perceive 
satisfaction with various aspects of life including work, health, leisure, home, and the 
neighborhood. 

 
The Minneapolis-St. Paul Transportation Happiness Map utilizes the spatiotemporal details, 
travel mode information, and happiness ratings associated with the 10,968 trip episodes in the 
dataset. Note that each trip may contain multiple transportation modes. The data used to visualize 
the transportation happiness map include a total of 13,924 mode segments with happiness rating 
information.  
 
Tables 2 and 3 respectively illustrate the point-level and trip segment-level data records that we 
used to generate the Minneapolis-St. Paul Transportation Happiness Map. Using the smartphone-
based location sensing technology, the Daynamica app records location time series of the phone. 
The app further segments location time series into activity vs. trip segments based upon self-
designed algorithms. As a result, each activity/trip segment captured by the app contain 
information on all point locations associated with the segment. The Location Timestamp column 
in Table 2 presents information on the exact time in milliseconds since the Unix epoch when a 
specific activity/trip segment passes through the specific location. The Segment ID column 
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presents information on the ID of the activity/trip segment with which this point location is 
associated. This Trip Segment ID allows us to match segment-level happiness ratings (as shown 
in Table 3) to each point location in the trip segment. As shown in Table 2, each location in the 
dataset come with speed and accuracy information that was directly generated by the 
smartphone’s location sensors.  
 
Table 2. Examples of raw data records at the point level  
Index Segment 

ID 
Location 
Timestamp 

Latitude Longitude Speed Accuracy Geometry 

411706 15086 1481050134234 44.9495631 -93.2627 1.016949 7 POINT (-93.2627403 44.9495631) 
411707 15086 1481050129233 44.9496088 -93.2627 5.058428 5 POINT (-93.2627369 44.9496088) 
411708 15086 1481050124227 44.9498365 -93.2627 12.0558 7 POINT (-93.2627490 44.9498365) 
411709 15086 1481050119236 44.9503779 -93.2627 15.61236 6 POINT (-93.2627399 44.9503779) 
411710 15086 1481050114228 44.9510812 -93.2627 12.31548 7 POINT (-93.2627132 44.9510812) 

 
Table 3 illustrate the segment-level data record. As mentioned earlier, the Daynamica app breaks 
location time series into activity vs. trip segments. These segments construct the activity and trip 
episodes shown in Figure 2(a). In general, an activity episode contains a single activity segment 
record, while a trip episode may contain more than one trip segment records. As shown in Table 
3, the segments #9198 and #9199 are trip segments with different transportation modes: car and 
walk. As each trip departs from the previous activity location to the next activity location, 
consecutive trip segments in the data represent that multiple transportation modes were used to 
travel from the previous activity location to the next activity location. The Start Timestamp and 
End Timestamp columns in Table 3 are the start and end time of each segment in milliseconds 
since the Unix epoch.  
 
Table 3. Examples of raw data records at the activity/trip segment level 
Segment 
ID 

Person 
ID 

Start Timestamp  End  
Timestamp 

Segment 
Type 

Subtype Happy Tired Stress Sad Pain Meaningful 

9197 1007 1478192370002 1478194440018 ACTIVITY HOME 5 6 2 1 1 4 
9198 1007 1478194440018 1478194740006 TRIP CAR 5 3 3 1 1 3 
9199 1007 1478194740006 1478195610000 TRIP WALK 5 3 3 1 1 3 
9200 1007 1478195610000 1478205870001 ACTIVITY EDUCATION 4 3 4 1 1 4 
9201 1007 1478205870001 1478206560005 TRIP WALK 3 2 3 1 1 3 
9202 1007 1478206560005 1478208210002 TRIP CAR 3 2 3 1 1 3 
9203 1007 1478208210002 1478218320010 ACTIVITY PERSONAL 6 3 3 1 1 6 
9204 1007 1478218320010 1478220090000 TRIP CAR 6 4 2 1 1 6 
9205 1007 1478220090000 1478261250001 ACTIVITY HOME 7 5 2 1 1 4 

 
The happiness ratings were collected via the annotation function in the Daynamica app. Each app 
user was asked to answer questions about their emotional experiences associated with each 
activity/trip. The questions include a total six different types of emotions: happy, meaningful, 
sad, painful, tired, and stressful. All emotion variables are scaled 0–6. Take Happy as an 
example, the original question was, “From 0 to 6, where a 0 means you were not happy at all and 
a 6 means you were very happy, how happy did you feel during this time?” Note that information 
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on emotions was collected at the episode level for each activity/trip. For a trip with multiple 
mode segments, these segments have the same data value for each emotion variable. For 
example, segments # 9198 and #9199 in Table 3 have the same values for emotion variables 
because they belong to the same trip. Note that only trip-related data were used in this project.  
 

Method 
 
We use the Open Source Routing Machine (OSRM) version 5.22 to match the trip-related points 
to streets and roads in the Minneapolis-St. Paul region. We created the necessary Open Source 
Routing Matching (OSRM) files from the March 20, 2017 planet extract of OpenStreetMap 
(OSM) data, for a bounding box covering the Minneapolis-St. Paul Metro area. A Python script 
was developed to feed consecutive trip-related GPS points with an accuracy better than 25 
meters through the OSRM API (Project-osrm.org, 2019), which has been made available for 
download at https://z.umn.edu/hrmm.  
 
Specifically, the Python script was run separately for each of the three OSRM profiles: 

• The driving profile was used for points associated with three trips modes: 1 (car), 2 (bus), 
and 7 (in vehicle).  

• The walking profile was used for pointed associated with trip mode 3 (walk).  
• The biking profile was used for points associated with trip mode 4 (bike).  

 
Points associated with trip mode 5 (rail) were not matched because there is no OSRM profile for 
rail travel. Points associated with trip mode 6 (other) were not matched because there is 
insufficient information available to determine the appropriate OSRM profile to use. For modes 
1, 2, 3, 4, and 7, this Python script was able to output each individually matched trip segment as 
a feature in a shapefile.  
 
Not all points associated with a trip segment ID have high levels of accuracy. We decided to only 
match points with an accuracy value lower than 25 meters to a street or road. As shown in Table 
2, each point has an accuracy value measured in meters. The lower the accuracy value, the higher 
the accuracy level. According to Developer.android.com (2020), if the accuracy value is 25, then 
there is a 68% chance the true location of the device is within 25 meters of the reported 
coordinates. For trip segments that contain points with accuracy values higher than 25, the 
matching process returned multiple features with the same trip segment ID for the portions that 
could be matched. Using ArcGIS Pro version 2.4, the features in each of the output shapefiles 
were dissolved by trip segment ID, so features associated with the same trip segment ID are 
consisted of a single polyline. These feature classes were then merged into a single feature class 
with all matched trip segments for every mode. The features were then projected into the WGS 
1984 UTM Zone 15 N (EPSG:32615) coordinate reference system, so that further distance-based 
analysis could use Cartesian, instead of geodetic, distance calculations. 
 
To create the rail segments, the Merge Divided Roads tool in ArcGIS Pro was used to generalize 
the parallel tracks of the METRO Blue and Green lines into a single track. The rail lines were 
segmented with breaks at station locations, and midpoints were calculated. This was done 
because the GPS data are not accurate enough to match to a particular direction without using the 

https://z.umn.edu/hrmm
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OSRM algorithm. Using a one-to-many intersection spatial join, every rail trip within 50 meters 
of a rail line was matched to the midpoint of the rail network segment it passed near. 
 
Since not all GPS traces could be matched to a route, there was data loss with the map matching 
process. Table 4 summarizes the final route matched data by trip mode in comparison to the raw 
GPS data. A total of 12,544 trip mode segments were finally matched to 77,063 street/road 
segments in the seven-county Minneapolis-St. Paul region.  
 
Table 4. Data loss during the route matching process 

 
Raw 
GPS 
data 

Route 
Matched 
data 

Total Single-Mode Trip Segments 13,924 12,544 

Driving 7,324 6,896 

Bus 626 597 

Walking 3,608 3,138 

Biking 520 508 

Rail 220 190 

Other 316 0 

Vehicle 1,310 1,215 

Note: Data loss was due to either discarded because the GPS accuracy score was higher than 25 meters, or lost 
because the segment could not be matched by OSRM (or spatial join to the rail network). 
 
In addition to visualizing transportation happiness of each of the six specific modes (driving, bus, 
walking, biking, rail, and vehicle), the interactive Minneapolis-St. Paul Transportation Happiness 
Map allows visualization for four different mode combinations: Driving & In Vehicle, Biking & 
Walking, Bus & Rail, and All Modes. 
 
To create street segments with aggregated happiness scores from multiple modes, the street 
segments with matched single-mode happiness scores were split at every intersection using 
ArcGIS Pro’s Planarize tool regardless of whether the street segments were roads, bike paths, or 
footpaths. The linear features in OpenStreetMap data (“ways”) may span multiple blocks and it 
is possible for a trip to traverse only a portion of the way; ways were planarized to construct 
approximate minimum travel units, e.g. a city block. Trip geometries were then matched to the 
planarized segments. 
 
A new feature class representing the midpoints of each of these street/road segments was then 
created to facilitate the spatial joins in the next step. The midpoint-based spatial joining is to 
ensure that trips were not matched to multiple street/road segments at intersections. Using a one-
to-many intersection-type spatial join with a search radius of 0.1 meters, every mode-specific 
segment was matched to the midpoint of every street/road segment it passed through. As part of 
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the join process, the mean and median of each emotion variable, total trips, and count of unique 
users for trips that matched to the midpoint were calculated.  
 
To allow users to explore the mode-specific and time varying nature of transportation happiness, 
we not only calculated the mean and median of each emotion variable of all trips matched to a 
single segment, but also calculated the means and medians among trips of different time bucket 
categories and different travel mode categories. In the end, given the mode/time/emotion/statistic 
variations, the Minneapolis-St. Paul Transportation Happiness Map allows a total of 1,120 
combinations of mapping options (10 mode options * 7 time options *8 emotion options * 2 
statistic options). These options are listed in Table 4 below. 
 
Table 4. Available Mapping Options at the Minneapolis-St. Paul Transportation Happiness Map 
Mode options (10) Time buckets (7) Emotion ratings (8) Statistics (2) 
All modes 
Driving 
Bus 
Walking 
Biking 
Rail 
In vehicle 
Driving + In vehicle 
Walking + Biking 
Bus + Rail 

All times 
Weekday AM Rush 
Weekday PM Rush 
Weekday AM + PM Rush 
Weekday non-Rush 
Weekday All Times 
Weekend All Times 
 

Happy 
Meaningful 
Sad 
Pain 
Tired 
Stress 
Net affect 
Peak affect 

Mean 
Median 
 

 
The net affect and peak affect values were calculated as below. 

• Net Affect = mean (happy, meaningful) - mean (sad, pain, tired, stress).  
• Peak Affect = max (happy, meaningful) - max (sad, pain, tired, stress). 

 

Limitations 
 
The map matching algorithm represents a baseline estimate. The GPS data collected by smart 
phones is not always accurate enough to match to a particular route. While the vast majority of 
these cases are rejected by the algorithm (i.e. not matched to a road segment), there are some 
spurious matches in the dataset. 
 
Map matching is more accurate than snapping GPS points to the nearest segment, especially at 
intersections, as the process takes into account direction of travel using the GPS trace data. 
Snapping to the nearest segment at an intersection without consideration for previous and future 
points (direction) may result in snapping to the incorrect segment. Despite the improvement 
observed using the map matching process, we cannot be 100% confident in the results. The 
algorithm does report the confidence level of each match, and the project could be enhanced by 
taking that confidence level into account at one or more points in the workflow. 
 
Because the algorithm does not contain a profile for rail travel, it was not possible to use OSRM 
to match rail trips, and we were forced to fall back on snapping to the nearest rail line. Because 
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there are very few intersections on the rail network relative to its length, this is less of a problem 
than it would be for the road network, but would require manual review, a new OSRM profile, or 
other steps to establish the direction of rail trips. Given the small number of rail trips in the 
dataset, the time necessary to create this profile is likely to have a low return on investment. This 
same limitation also applies to dedicated transit right-of-ways for buses, as the map matching 
algorithm will attempt to route these trips of those right-of-ways (since there is no profile to 
differentiate between a bus and a car). There are very few of these dedicated right of ways in the 
Minneapolis-St. Paul Metro, but this limitation could be more impactful in other locations. 
 
The data are currently hosted on ArcGIS Online. That limits the size of the dataset that can be 
posted, as well as slowing down the speed at which data move between the server and the client. 
The current load speeds are tolerably fast, but that could change if the dataset became much 
larger. Additionally, because most of the graphics rendering takes place in the user’s web 
browser, users with older/slower computers will see relatively poor performance compared to 
more powerful machines. Performance could be improved by changing the hosting or delivery 
methods. 
 

Scalability 
 
Within a single geographic region, we expect the map matching process to scale very well as the 
number of trips increases. However, the map matching process for the Minneapolis-St. Paul 
region covers a small geographic area.  
 
The quality of the map matching is dependent on the quality of the OpenStreetMap data. Quality 
is a measure of accuracy and completeness of coverage for the area of interest. For the 
Minneapolis-St. Paul area we judge OSM data quality to be high; the application may have 
difficulty handling regions where the quality is lower. 
 
Because the data are aggregated to road segments before hosting them on ArcGIS Online, the 
only effect of additional trips will come from rendering road segments that were not traversed by 
previous trips. Because the dataset already covers the most traveled roads, additional trips are 
unlikely to dramatically increase the number of trip segments the app needs to render. 
 
The scalability is a little worse as the geographic extent of the trips increases. The Python code 
that implements the algorithm is tuned for the Minnesota dataset, and there will be an additional 
time cost associated with generalizing the program. Additionally, because the algorithm requires 
building a graph of all the nodes in the OpenStreetMap data in the relevant area, it is best to keep 
this area small. For example, if matching trips in both Minneapolis and Chicago, it would be 
better to build two separate graphs and run the analysis twice, rather than building the graph for a 
single region that encompasses both cities.  
 
The larger issue with expanding the geographic extent of trips is increasing the number of road 
segments that need to be stored on the server and rendered in the user’s browser. For the current 
77,000 road segments, the rendering performs acceptably. Attempting to substantially increase 
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the number of segments being rendered may require technical changes to make the experience 
for users more palatable. 
 

Concluding Remarks 
The Minneapolis-St. Paul Transportation Happiness Map provides mode- and time-specific 
information on travelers’ emotional experiences on the streets and roads in the Minneapolis-St. 
Paul metropolitan region. Map users can interactively explore street and road segments that are 
associated with positive and/or negative emotional experiences based upon their interested travel 
modes and travel time periods. The map is admittedly exploratory in nature because only 398 
residents contributed a week of trip data. The driving-based transportation happiness map has the 
largest coverage in space as the majority of trips in the dataset are driving trips. Overall, biking-
based transportation happiness levels are higher than the transportation happiness levels 
associated with other modes. To provide map users a sense of confidence in the data, the Map 
provides information on the number of unique residents who travelled along each specific 
road/street segment and contributed to the transportation happiness data. A closer look at the 
streets in downtown Minneapolis show that the South 8th Street and South 4th Street are the least 
happy streets while the South 2nd street and the 3rd Avenue South are the happiest streets.  
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